Notes

AMPHIDINOLIDE F, A NEW CYTOTOXIC MACROLIDE FROM THE MARINE DINOFLAGELLATE *Amphidinium* sp.

Jun'ichi Kobayashi, Masashi Tsuda, Masami Ishibashi, Hideyuki Shigemori, Terufumi Yamasu^a, Hiroshi Hirota^b and Takuma Sasaki^c

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan ^aDivision of General Education, University of the Ryukyus, Okinawa 903-01, Japan ^bDepartment of Chemistry, Faculty of Science, The University of Tokyo, Tokyo 113, Japan ^cCancer Research Institute, Kanazawa University, Kanazawa 920, Japan

(Received for publication May 31, 1991)

Marine dinoflagellates have proved to be a subject of considerable attention as a new valuable source of bioactive compounds.¹⁾ During our studies on bioactive substances from Okinawan marine organisms,²⁾ we have isolated five cytotoxic macrolides, named amphidinolides $A \sim E$, from the laboratorycultured dinoflagellate *Amphidinium* sp.^{3,4)} Recently, we further investigated a dinoflagellate of the genus *Amphidinium* which was associated with the Okinawan flatworm *Amphiscolops magniviridis* and a different species from those reported previously.^{1,3)} Here we wish to describe the isolation and structure elucidation of a new cytotoxic 25-membered macrocyclic lactone, named amphidinolide F (1).

The host invertebrate *A. magniviridis* was collected at Zanpa, Okinawa, and the associated dinoflagellate *Amphidinium* sp. was isolated and mass cultured unialgally at 25°C for 2 weeks in a sea water medium enriched with 1% ES supplement.⁵⁾ The cultured alga was harvested by centrifugation to yield 740 g of cells (wet weight) from 960 liters of culture. The harvested alga was extracted with MeOH-toluene (3:1) and the extract was partitioned between toluene and 1 M aq NaCl. The toluene-soluble fraction was subjected to a silica gel column eluted with $5 \sim 30\%$ MeOH in CHCl₃ followed by reversed-phase medium and HPLC's (Develosil LOP-ODS 24S and Develosil ODS-5) with 75% acetonitrile to give a macrolide mixture. Purification of this mixture by preparative TLC developed twice with acetone - hexane (1:2) afforded amphidinolide F (1, 1×10^{-5} %, wet weight) together with previously reported amphidinolides B (8×10^{-5} %)⁶⁾ and C (3×10^{-5} %).⁵⁾

Amphidinolide F (1) was obtained as a colorless amorphous solid, $[\alpha]_D^{30} - 57^\circ$ (c 0.1, CHCl₃). The molecular formula of 1, $C_{35}H_{52}O_9$, was established by FAB-MS ($(M+H)^+$, m/z 617) and HREI-MS $(M^+, m/z \ 616.3616, \Delta + 0.4 \text{ mmu})$. The IR spectrum (film) showed absorptions due to hydroxyl(s) (3400 cm^{-1}) and carbonyl (1700 cm^{-1}) group(s) and the UV sbsorption maximum (MeOH) at 237 nm (\$ 22,000) suggested the presence of diene chromophore. The ¹H and ¹³C NMR data (Table 1) of 1 including DEPT experiments revealed the presence of two isolated ketones, an ester carbonyl, four olefins, eleven sp^3 methines (eight of them bearing oxygen atoms), seven methylenes, and six methyl groups. These results accounted for seven of the ten unsaturations, suggesting that 1 contains three rings (two ethers and one lactone). The assignment of all protonated carbons was established by the heteronuclear multiple-quantum correlation (HMQC) spectrum.⁷⁾ The detailed analyses of the ¹H-¹H COSY spectrum of 1 revealed the proton connectivities for six segments of $C-2 \sim C-4$, $C-5 \sim C-10$, C-12~C-14, C-16~C-17, C-19~C-21, and C- $22 \sim C-29$. In the COSY spectrum the cross-peaks for 4-H/5-H₂ and 21-H₂/22-H₂ were obscure due to heavily overlapping of the broad methylene signals. The homonuclear Hartmann-Hahn (HOHAHA) spectrum⁸⁾ was, however, quite efficient for clarifying the proton networks of these complex methylene signals, presenting the cross-peaks for these moieties (31-H₃/4-H, 31-H₃/5a-H, and 31-H₃/5b-H; 20-H/21a-H, 20-H/21b-H, 20-H/22a-H,

and 20-H/22b-H) that reveal the connections of C-4/C-5 bond and C-21/C-22 bond. Evidence for the connection between C-10 and C-12 through C-11 was provided by long-range ${}^{1}\text{H}{-}^{13}\text{C}$ correlations obtained from the heteronuclear multiple-bond correlation (HMBC) experiment⁹⁾ (10-H/C-11, 10-H/C-12, 10-H/C-33, 33-H₃/C-10, 33-H₃/C-11, and 33-H₃/C-12). From these observations the six segments based on the COSY data were connected into three partial structures: C-2~C-14, C-16~C-

17, and C-19~C-29. These three fragments were shown to be linked through three carbonyls (δ 213.58, 207.47, and 171.16) on the basis of HMBC correlations (2-H₂/C-1, 24-H/C-1, 14-H₂/C-15, 35-H₃/C-15, 17-H₂/C-18, and 19-H₂/C-18). In particular the observation of the 24-H/C-1 cross-peak confirmed the fact that the ester bond is present between C-1 and C-24 to construct a 25-membered macrocyclic lactone ring. This finding was firmly ascertained by the comparison of the ¹H and ¹³C

Position	$^{1}\mathrm{H}$		J (Hz)	¹³ C	¹ H coupled with ¹³ C (HMBC correlations)
1				171.16 s	2-H ₂ , 24-H
2	2.49 (21	H) m		38.65 t	2 '
3	3.81	đt	2.4. 6.8	81.26 d	2-H ₂ , 5a-H, 31-H ₂
4	1.81	m	,	39.67 d	$2-H_2$, $5a-H_1$, $31-H_2$
5a	2.11	m		36.81 t	31-H ₂
5b	1.39	m			
6	3.78	dt	2.1. 7.3	79.08 d	7-H. 8-H
7	3.53	m	,	76.71 d	8-H
8	4.05	d	4.0	76.71 d	7-H. 32a-H. 32b-H
9				144.37 s	7-H. 8-H. 32a-H
10	5.98	br s		124.62 d	8-H. 32a-H. 32b-H
11				140.00 s	10-H. 12-H. 33-H ₂ . 34-H ₂
12	2.25	m		49.46 d	10-H, 14a-H, 33-H ₂ , 34-H ₂
13	3.93	dt	2.0. 9.8	70.50 d	12-H. 14a-H. 34-H.
14a	2.74	dd	9.3. 15.1	45.65 t	
14b	2.51	m	,,	10100 0	
15				213.58 s	14a-H. 14b-H. 17a-H. 17b-H. 35-H.
16	3.15	m		42.93 d	17a-H. 17b-H. 35-H.
17a	3.04	dd	9.3. 17.1	45.81 t	35-H ₂
17b	2.29	m	,		
18				207.47 s	17a-H. 17b-H. 19a-H. 19b-H
19a	2.73	dd	8.8, 16.6	48.45 t	
19b	2.50	m	,		
20	4.36	m		74.82 d	19a-H. 19b-H. 21b-H
21a	2.08	m		31.84 t	19a-H. 19b-H
21b	1.47	m			······································
22a	1.90	m		28.46 t	21a-H
22b	1.54	m			
23	4.08	dd	7.8, 14.8	79.87 d	24-H. 25-H
24	5.17	t	7.8	77.93 d	22a-H. 22b-H. 23-H. 26-H
25	5.31	dd	7.8, 14.7	123.97 d	24-H. 26-H
26	6.50	dd	11.2, 14.7	132.09 d	24-H. 25-H
27	5.76	br d	11.2	124.06 d	25-H, 29-H ₂ , 30-H ₂
28				138.25 s	26-H. 29-H ₂ , 30-H ₂
29	1.75 (3)	H) s		26.00 g	30-H ₂
30	1.73 (3)	H) s		18.43 a	29-H ₂
31	1.00 (3)	H) d	6.3	15.39 a	
32a	5.14	br s		116.16 t	8-H. 10-H
32b	4.93	br s			
33	1.67 (3)	H) s		13.94 a	12-H
34	1.03 (3)	H) d	7.3	15.29 a	12-H
35	1.10 (3)	H) d	6.8	16.20 q	17а-Н, 17b-Н

Table 1. ¹H and ¹³C NMR data of amphidinolide F (1).^a

^a Recorded on a Bruker AM-500 spectrometer in CDCl₃.

NMR data of amphidinolide C, a 25-membered macrolide previously isolated from the different species of the dinoflagellate belonging to the genus Amphidinium.⁵⁾ The side chain of amphidinolide F (1) was shown to consist of a diene bearing two methyl groups, C₆-unit shorter than the side chain of amphidinolide C. The phase-sensitive NOESY spectrum of 1 showed cross-peaks for 24-H/26-H, 25-H/27-H, 26-H/30-H₃, and 27-H/29-H₃, which clearly accounted for the diene structure (25Econfiguration, $J_{25,26} = 14.7$ Hz). Thus the gross structure of amphidinolide F (1) was concluded to be 1. Since the ¹H and ¹³C NMR chemical shifts as well as the ¹H-¹H coupling constants of amphidinolide F (1) correspond well to those of amphidinolide C, it was suggested that in compound 1 the THF rings are also present at C-3/C-6 and C-20/C-23 positions and the stereochemistries of 11 chiral centers present in 1 correspond to those of amphidinolide C.

Amphidinolide F (1) is considered to be biogenetically closely related to amphidinolide C, the former possibly being a precursor of the latter. Amphidinolide F (1) exhibited cytotoxic activity against murine lymphoma L1210 cells and human epidermoid carcinoma KB cells *in vitro* with IC₅₀ values of 1.5 and $3.2 \mu g/ml$, respectively.

Acknowledgment

This study was supported in part by Grant-in-Aid (02151037) for Cancer Research from Ministry of Education, Science, and Culture, Japan.

References

1) KOBAYASHI, J.: Pharmacologically active metabolites

from symbiotic microalgae in Okinawan marine invertebrates. J. Nat. Prod. 52: 225~238, 1989

- KOBAYASHI, J.: Potential pharmacological agents from Okanawan marine organisms. New J. Chem. 14: 741~745, 1990
- 3) KOBAYASHI, J.; M. ISHIBASHI, T. MURAYAMA, M. TAKAMATSU, M. IWAMURA, Y. OHIZUMI & T. SASAKI: Amphidinolide E, a novel antileukemic 19-membered macrolide from the cultured symbiotic dinoflagellate *Amphidinium* sp. J. Org. Chem. 55: 3421 ~ 3423, 1990 and references cited therein
- YAMASU, T. & A. OKAZAKI: Preliminary faunal list of acoel turbellarian species from the Ryukyu islands. Galaxea 6: 61~68, 1987
- 5) KOBAYASHI, J.; M. ISHIBASHI, M. R. WÄLCHLI, H. NAKAMURA, Y. HIRATA, T. SASAKI & Y. OHIZUMI: Amphidinolide C: the first 25-membered macrocyclic lactone with potent antineoplastic activity from the cultured dinoflagellate *Amphidinium* sp. J. Am. Chem. Soc. 110: 490~494, 1988
- 6) ISHIBASHI, M.; Y. OHIZUMI, M. HAMASHIMA, H. NAKAMURA, Y. HIRATA, T. SASAKI, & J. KOBAYASHI: Amphidinolide-B, a novel macrolide with potent antineoplastic activity from the marine dinoflagellate *Amphidinium* sp. J. Chem. Soc. Chem. Commun. 1987: 1127~1129, 1987
- BAX, A. & S. SUBRAMANIAN: Sensitivity-enhanced two-dimensional heteronuclear shift correlation NMR spectroscopy. J. Magn. Reson. 67: 565~569, 1986
- DAVIS, D. G. & A. BAX: Assignment of Complex ¹H NMR spectra via two-dimensional homonuclear Hartmann-Hahn spectroscopy. J. Am. Chem. Soc. 107: 2820~2821, 1985
- 9) BAX, A. & M. F. SUMMERS: ¹H and ¹³C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108: 2093~2094, 1986